3.4.47 \(\int \frac {\cot (c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx\) [347]

Optimal. Leaf size=131 \[ -\frac {2 A \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a} d}+\frac {(A-i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b} d}+\frac {(A+i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b} d} \]

[Out]

-2*A*arctanh((a+b*tan(d*x+c))^(1/2)/a^(1/2))/d/a^(1/2)+(A-I*B)*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/d
/(a-I*b)^(1/2)+(A+I*B)*arctanh((a+b*tan(d*x+c))^(1/2)/(a+I*b)^(1/2))/d/(a+I*b)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.21, antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 6, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {3694, 3620, 3618, 65, 214, 3715} \begin {gather*} \frac {(A-i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}+\frac {(A+i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}-\frac {2 A \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Cot[c + d*x]*(A + B*Tan[c + d*x]))/Sqrt[a + b*Tan[c + d*x]],x]

[Out]

(-2*A*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/(Sqrt[a]*d) + ((A - I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqr
t[a - I*b]])/(Sqrt[a - I*b]*d) + ((A + I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/(Sqrt[a + I*b]*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3694

Int[(((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_))/((a_.) + (b_.)*tan[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*x])^n*Simp[a*A + b*B - (A*b - a*B)
*Tan[e + f*x], x], x], x] + Dist[b*((A*b - a*B)/(a^2 + b^2)), Int[(c + d*Tan[e + f*x])^n*((1 + Tan[e + f*x]^2)
/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2,
 0] && NeQ[c^2 + d^2, 0]

Rule 3715

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps

\begin {align*} \int \frac {\cot (c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx &=A \int \frac {\cot (c+d x) \left (1+\tan ^2(c+d x)\right )}{\sqrt {a+b \tan (c+d x)}} \, dx+\int \frac {B-A \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx\\ &=\frac {1}{2} (-i A+B) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx+\frac {1}{2} (i A+B) \int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx+\frac {A \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac {(2 A) \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}-\frac {(A-i B) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}-\frac {(A+i B) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d}\\ &=-\frac {2 A \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a} d}+\frac {(i A-B) \text {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}-\frac {(i A+B) \text {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}\\ &=-\frac {2 A \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a} d}+\frac {(A-i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b} d}+\frac {(A+i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.
time = 29.41, size = 11296, normalized size = 86.23 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(Cot[c + d*x]*(A + B*Tan[c + d*x]))/Sqrt[a + b*Tan[c + d*x]],x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 1.18, size = 33052, normalized size = 252.31

method result size
default \(\text {Expression too large to display}\) \(33052\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*cot(d*x + c)/sqrt(b*tan(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 8380 vs. \(2 (101) = 202\).
time = 16.03, size = 16835, normalized size = 128.51 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[-1/4*(4*sqrt(2)*(a^3 + a*b^2)*d^5*sqrt(-((2*A*B*a^2*b + 2*A*B*b^3 + (A^2 - B^2)*a^3 + (A^2 - B^2)*a*b^2)*d^2*
sqrt((A^4 + 2*A^2*B^2 + B^4)/((a^2 + b^2)*d^4)) - (A^4 + 2*A^2*B^2 + B^4)*a^2 - (A^4 + 2*A^2*B^2 + B^4)*b^2)/(
4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2))*sqrt((4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*
a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4))*((A^4 + 2*A^2*B^2 + B^4)/((a^2 + b^2)*d^4))^
(3/4)*arctan(-((2*(A^7*B + 3*A^5*B^3 + 3*A^3*B^5 + A*B^7)*a^5 - (A^8 + 2*A^6*B^2 - 2*A^2*B^6 - B^8)*a^4*b + 4*
(A^7*B + 3*A^5*B^3 + 3*A^3*B^5 + A*B^7)*a^3*b^2 - 2*(A^8 + 2*A^6*B^2 - 2*A^2*B^6 - B^8)*a^2*b^3 + 2*(A^7*B + 3
*A^5*B^3 + 3*A^3*B^5 + A*B^7)*a*b^4 - (A^8 + 2*A^6*B^2 - 2*A^2*B^6 - B^8)*b^5)*d^4*sqrt((4*A^2*B^2*a^2 - 4*(A^
3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt((A^4 + 2*A^2*B^2 + B^4)/((
a^2 + b^2)*d^4)) + (2*(A^9*B + 4*A^7*B^3 + 6*A^5*B^5 + 4*A^3*B^7 + A*B^9)*a^4 - (A^10 + 3*A^8*B^2 + 2*A^6*B^4
- 2*A^4*B^6 - 3*A^2*B^8 - B^10)*a^3*b + 2*(A^9*B + 4*A^7*B^3 + 6*A^5*B^5 + 4*A^3*B^7 + A*B^9)*a^2*b^2 - (A^10
+ 3*A^8*B^2 + 2*A^6*B^4 - 2*A^4*B^6 - 3*A^2*B^8 - B^10)*a*b^3)*d^2*sqrt((4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b
 + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - sqrt(2)*((A*a^5 + B*a^4*b + 2*A*a^3*b^2 + 2*B
*a^2*b^3 + A*a*b^4 + B*b^5)*d^7*sqrt((4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a
^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt((A^4 + 2*A^2*B^2 + B^4)/((a^2 + b^2)*d^4)) + ((A^3 + A*B^2)*a^4 + 2*(A^3 + A*
B^2)*a^2*b^2 + (A^3 + A*B^2)*b^4)*d^5*sqrt((4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^
2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt(-((2*A*B*a^2*b + 2*A*B*b^3 + (A^2 - B^2)*a^3 + (A^2 - B^2)*a*b^2)*d^2*
sqrt((A^4 + 2*A^2*B^2 + B^4)/((a^2 + b^2)*d^4)) - (A^4 + 2*A^2*B^2 + B^4)*a^2 - (A^4 + 2*A^2*B^2 + B^4)*b^2)/(
4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2))*sqrt(((4*(A^4*B^2 + A^2*B^4)*a^4 - 4*(A^
5*B - A*B^5)*a^3*b + (A^6 + 3*A^4*B^2 + 3*A^2*B^4 + B^6)*a^2*b^2 - 4*(A^5*B - A*B^5)*a*b^3 + (A^6 - A^4*B^2 -
A^2*B^4 + B^6)*b^4)*d^2*sqrt((A^4 + 2*A^2*B^2 + B^4)/((a^2 + b^2)*d^4))*cos(d*x + c) + sqrt(2)*((4*A^3*B^2*a^4
 - 4*(A^4*B - A^2*B^3)*a^3*b + (A^5 + 2*A^3*B^2 + A*B^4)*a^2*b^2 - 4*(A^4*B - A^2*B^3)*a*b^3 + (A^5 - 2*A^3*B^
2 + A*B^4)*b^4)*d^3*sqrt((A^4 + 2*A^2*B^2 + B^4)/((a^2 + b^2)*d^4))*cos(d*x + c) + (4*(A^5*B^2 + A^3*B^4)*a^3
- 4*(A^6*B - A^4*B^3 - 2*A^2*B^5)*a^2*b + (A^7 - 5*A^5*B^2 - A^3*B^4 + 5*A*B^6)*a*b^2 + (A^6*B - A^4*B^3 - A^2
*B^5 + B^7)*b^3)*d*cos(d*x + c))*sqrt(-((2*A*B*a^2*b + 2*A*B*b^3 + (A^2 - B^2)*a^3 + (A^2 - B^2)*a*b^2)*d^2*sq
rt((A^4 + 2*A^2*B^2 + B^4)/((a^2 + b^2)*d^4)) - (A^4 + 2*A^2*B^2 + B^4)*a^2 - (A^4 + 2*A^2*B^2 + B^4)*b^2)/(4*
A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos
(d*x + c))*((A^4 + 2*A^2*B^2 + B^4)/((a^2 + b^2)*d^4))^(1/4) + (4*(A^6*B^2 + 2*A^4*B^4 + A^2*B^6)*a^3 - 4*(A^7
*B + A^5*B^3 - A^3*B^5 - A*B^7)*a^2*b + (A^8 - 2*A^4*B^4 + B^8)*a*b^2)*cos(d*x + c) + (4*(A^6*B^2 + 2*A^4*B^4
+ A^2*B^6)*a^2*b - 4*(A^7*B + A^5*B^3 - A^3*B^5 - A*B^7)*a*b^2 + (A^8 - 2*A^4*B^4 + B^8)*b^3)*sin(d*x + c))/co
s(d*x + c))*((A^4 + 2*A^2*B^2 + B^4)/((a^2 + b^2)*d^4))^(3/4) + sqrt(2)*((2*(A^4*B + A^2*B^3)*a^6 - (A^5 - 2*A
^3*B^2 - 3*A*B^4)*a^5*b + (3*A^4*B + 4*A^2*B^3 + B^5)*a^4*b^2 - 2*(A^5 - 2*A^3*B^2 - 3*A*B^4)*a^3*b^3 + 2*(A^2
*B^3 + B^5)*a^2*b^4 - (A^5 - 2*A^3*B^2 - 3*A*B^4)*a*b^5 - (A^4*B - B^5)*b^6)*d^7*sqrt((4*A^2*B^2*a^2 - 4*(A^3*
B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt((A^4 + 2*A^2*B^2 + B^4)/((a^
2 + b^2)*d^4)) + (2*(A^6*B + 2*A^4*B^3 + A^2*B^5)*a^5 - (A^7 + A^5*B^2 - A^3*B^4 - A*B^6)*a^4*b + 4*(A^6*B + 2
*A^4*B^3 + A^2*B^5)*a^3*b^2 - 2*(A^7 + A^5*B^2 - A^3*B^4 - A*B^6)*a^2*b^3 + 2*(A^6*B + 2*A^4*B^3 + A^2*B^5)*a*
b^4 - (A^7 + A^5*B^2 - A^3*B^4 - A*B^6)*b^5)*d^5*sqrt((4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^
2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)))*sqrt(-((2*A*B*a^2*b + 2*A*B*b^3 + (A^2 - B^2)*a^3 + (A^2 - B^2)*
a*b^2)*d^2*sqrt((A^4 + 2*A^2*B^2 + B^4)/((a^2 + b^2)*d^4)) - (A^4 + 2*A^2*B^2 + B^4)*a^2 - (A^4 + 2*A^2*B^2 +
B^4)*b^2)/(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2))*sqrt((a*cos(d*x + c) + b*sin(
d*x + c))/cos(d*x + c))*((A^4 + 2*A^2*B^2 + B^4)/((a^2 + b^2)*d^4))^(3/4))/(4*(A^10*B^2 + 4*A^8*B^4 + 6*A^6*B^
6 + 4*A^4*B^8 + A^2*B^10)*a^2*b - 4*(A^11*B + 3*A^9*B^3 + 2*A^7*B^5 - 2*A^5*B^7 - 3*A^3*B^9 - A*B^11)*a*b^2 +
(A^12 + 2*A^10*B^2 - A^8*B^4 - 4*A^6*B^6 - A^4*B^8 + 2*A^2*B^10 + B^12)*b^3)) + 4*sqrt(2)*(a^3 + a*b^2)*d^5*sq
rt(-((2*A*B*a^2*b + 2*A*B*b^3 + (A^2 - B^2)*a^3 + (A^2 - B^2)*a*b^2)*d^2*sqrt((A^4 + 2*A^2*B^2 + B^4)/((a^2 +
b^2)*d^4)) - (A^4 + 2*A^2*B^2 + B^4)*a^2 - (A^4 + 2*A^2*B^2 + B^4)*b^2)/(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b
 + (A^4 - 2*A^2*B^2 + B^4)*b^2))*sqrt((4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((
a^4 + 2*a^2*b^2 + b^4)*d^4))*((A^4 + 2*A^2*B^2 ...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \cot {\left (c + d x \right )}}{\sqrt {a + b \tan {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))**(1/2),x)

[Out]

Integral((A + B*tan(c + d*x))*cot(c + d*x)/sqrt(a + b*tan(c + d*x)), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [B]
time = 10.74, size = 2500, normalized size = 19.08 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cot(c + d*x)*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(1/2),x)

[Out]

- atan(((((32*(12*A^2*B*b^9*d^2 + 3*A^3*a*b^8*d^2 - 9*A*B^2*a*b^8*d^2))/d^5 - (((32*(16*A*b^10*d^4 - 4*B*a*b^9
*d^4 + 12*A*a^2*b^8*d^4))/d^5 - (32*(16*b^10*d^4 + 24*a^2*b^8*d^4)*(a + b*tan(c + d*x))^(1/2)*(-(((8*A^2*a*d^2
 - 8*B^2*a*d^2 + 16*A*B*b*d^2)^2/4 - (16*a^2*d^4 + 16*b^2*d^4)*(A^4 + 2*A^2*B^2 + B^4))^(1/2) - 4*A^2*a*d^2 +
4*B^2*a*d^2 - 8*A*B*b*d^2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2))/d^4)*(-(((8*A^2*a*d^2 - 8*B^2*a*d^2 + 16*A*B*b*d^2
)^2/4 - (16*a^2*d^4 + 16*b^2*d^4)*(A^4 + 2*A^2*B^2 + B^4))^(1/2) - 4*A^2*a*d^2 + 4*B^2*a*d^2 - 8*A*B*b*d^2)/(1
6*(a^2*d^4 + b^2*d^4)))^(1/2) + (32*(a + b*tan(c + d*x))^(1/2)*(16*A*B*b^9*d^2 + 18*A^2*a*b^8*d^2 - 10*B^2*a*b
^8*d^2))/d^4)*(-(((8*A^2*a*d^2 - 8*B^2*a*d^2 + 16*A*B*b*d^2)^2/4 - (16*a^2*d^4 + 16*b^2*d^4)*(A^4 + 2*A^2*B^2
+ B^4))^(1/2) - 4*A^2*a*d^2 + 4*B^2*a*d^2 - 8*A*B*b*d^2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2))*(-(((8*A^2*a*d^2 - 8
*B^2*a*d^2 + 16*A*B*b*d^2)^2/4 - (16*a^2*d^4 + 16*b^2*d^4)*(A^4 + 2*A^2*B^2 + B^4))^(1/2) - 4*A^2*a*d^2 + 4*B^
2*a*d^2 - 8*A*B*b*d^2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2) + (32*(3*A^4*b^8 + B^4*b^8)*(a + b*tan(c + d*x))^(1/2))
/d^4)*(-(((8*A^2*a*d^2 - 8*B^2*a*d^2 + 16*A*B*b*d^2)^2/4 - (16*a^2*d^4 + 16*b^2*d^4)*(A^4 + 2*A^2*B^2 + B^4))^
(1/2) - 4*A^2*a*d^2 + 4*B^2*a*d^2 - 8*A*B*b*d^2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2)*1i - (((32*(12*A^2*B*b^9*d^2
+ 3*A^3*a*b^8*d^2 - 9*A*B^2*a*b^8*d^2))/d^5 - (((32*(16*A*b^10*d^4 - 4*B*a*b^9*d^4 + 12*A*a^2*b^8*d^4))/d^5 +
(32*(16*b^10*d^4 + 24*a^2*b^8*d^4)*(a + b*tan(c + d*x))^(1/2)*(-(((8*A^2*a*d^2 - 8*B^2*a*d^2 + 16*A*B*b*d^2)^2
/4 - (16*a^2*d^4 + 16*b^2*d^4)*(A^4 + 2*A^2*B^2 + B^4))^(1/2) - 4*A^2*a*d^2 + 4*B^2*a*d^2 - 8*A*B*b*d^2)/(16*(
a^2*d^4 + b^2*d^4)))^(1/2))/d^4)*(-(((8*A^2*a*d^2 - 8*B^2*a*d^2 + 16*A*B*b*d^2)^2/4 - (16*a^2*d^4 + 16*b^2*d^4
)*(A^4 + 2*A^2*B^2 + B^4))^(1/2) - 4*A^2*a*d^2 + 4*B^2*a*d^2 - 8*A*B*b*d^2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2) -
(32*(a + b*tan(c + d*x))^(1/2)*(16*A*B*b^9*d^2 + 18*A^2*a*b^8*d^2 - 10*B^2*a*b^8*d^2))/d^4)*(-(((8*A^2*a*d^2 -
 8*B^2*a*d^2 + 16*A*B*b*d^2)^2/4 - (16*a^2*d^4 + 16*b^2*d^4)*(A^4 + 2*A^2*B^2 + B^4))^(1/2) - 4*A^2*a*d^2 + 4*
B^2*a*d^2 - 8*A*B*b*d^2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2))*(-(((8*A^2*a*d^2 - 8*B^2*a*d^2 + 16*A*B*b*d^2)^2/4 -
 (16*a^2*d^4 + 16*b^2*d^4)*(A^4 + 2*A^2*B^2 + B^4))^(1/2) - 4*A^2*a*d^2 + 4*B^2*a*d^2 - 8*A*B*b*d^2)/(16*(a^2*
d^4 + b^2*d^4)))^(1/2) - (32*(3*A^4*b^8 + B^4*b^8)*(a + b*tan(c + d*x))^(1/2))/d^4)*(-(((8*A^2*a*d^2 - 8*B^2*a
*d^2 + 16*A*B*b*d^2)^2/4 - (16*a^2*d^4 + 16*b^2*d^4)*(A^4 + 2*A^2*B^2 + B^4))^(1/2) - 4*A^2*a*d^2 + 4*B^2*a*d^
2 - 8*A*B*b*d^2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2)*1i)/((((32*(12*A^2*B*b^9*d^2 + 3*A^3*a*b^8*d^2 - 9*A*B^2*a*b^
8*d^2))/d^5 - (((32*(16*A*b^10*d^4 - 4*B*a*b^9*d^4 + 12*A*a^2*b^8*d^4))/d^5 - (32*(16*b^10*d^4 + 24*a^2*b^8*d^
4)*(a + b*tan(c + d*x))^(1/2)*(-(((8*A^2*a*d^2 - 8*B^2*a*d^2 + 16*A*B*b*d^2)^2/4 - (16*a^2*d^4 + 16*b^2*d^4)*(
A^4 + 2*A^2*B^2 + B^4))^(1/2) - 4*A^2*a*d^2 + 4*B^2*a*d^2 - 8*A*B*b*d^2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2))/d^4)
*(-(((8*A^2*a*d^2 - 8*B^2*a*d^2 + 16*A*B*b*d^2)^2/4 - (16*a^2*d^4 + 16*b^2*d^4)*(A^4 + 2*A^2*B^2 + B^4))^(1/2)
 - 4*A^2*a*d^2 + 4*B^2*a*d^2 - 8*A*B*b*d^2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2) + (32*(a + b*tan(c + d*x))^(1/2)*(
16*A*B*b^9*d^2 + 18*A^2*a*b^8*d^2 - 10*B^2*a*b^8*d^2))/d^4)*(-(((8*A^2*a*d^2 - 8*B^2*a*d^2 + 16*A*B*b*d^2)^2/4
 - (16*a^2*d^4 + 16*b^2*d^4)*(A^4 + 2*A^2*B^2 + B^4))^(1/2) - 4*A^2*a*d^2 + 4*B^2*a*d^2 - 8*A*B*b*d^2)/(16*(a^
2*d^4 + b^2*d^4)))^(1/2))*(-(((8*A^2*a*d^2 - 8*B^2*a*d^2 + 16*A*B*b*d^2)^2/4 - (16*a^2*d^4 + 16*b^2*d^4)*(A^4
+ 2*A^2*B^2 + B^4))^(1/2) - 4*A^2*a*d^2 + 4*B^2*a*d^2 - 8*A*B*b*d^2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2) + (32*(3*
A^4*b^8 + B^4*b^8)*(a + b*tan(c + d*x))^(1/2))/d^4)*(-(((8*A^2*a*d^2 - 8*B^2*a*d^2 + 16*A*B*b*d^2)^2/4 - (16*a
^2*d^4 + 16*b^2*d^4)*(A^4 + 2*A^2*B^2 + B^4))^(1/2) - 4*A^2*a*d^2 + 4*B^2*a*d^2 - 8*A*B*b*d^2)/(16*(a^2*d^4 +
b^2*d^4)))^(1/2) + (((32*(12*A^2*B*b^9*d^2 + 3*A^3*a*b^8*d^2 - 9*A*B^2*a*b^8*d^2))/d^5 - (((32*(16*A*b^10*d^4
- 4*B*a*b^9*d^4 + 12*A*a^2*b^8*d^4))/d^5 + (32*(16*b^10*d^4 + 24*a^2*b^8*d^4)*(a + b*tan(c + d*x))^(1/2)*(-(((
8*A^2*a*d^2 - 8*B^2*a*d^2 + 16*A*B*b*d^2)^2/4 - (16*a^2*d^4 + 16*b^2*d^4)*(A^4 + 2*A^2*B^2 + B^4))^(1/2) - 4*A
^2*a*d^2 + 4*B^2*a*d^2 - 8*A*B*b*d^2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2))/d^4)*(-(((8*A^2*a*d^2 - 8*B^2*a*d^2 + 1
6*A*B*b*d^2)^2/4 - (16*a^2*d^4 + 16*b^2*d^4)*(A^4 + 2*A^2*B^2 + B^4))^(1/2) - 4*A^2*a*d^2 + 4*B^2*a*d^2 - 8*A*
B*b*d^2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2) - (32*(a + b*tan(c + d*x))^(1/2)*(16*A*B*b^9*d^2 + 18*A^2*a*b^8*d^2 -
 10*B^2*a*b^8*d^2))/d^4)*(-(((8*A^2*a*d^2 - 8*B^2*a*d^2 + 16*A*B*b*d^2)^2/4 - (16*a^2*d^4 + 16*b^2*d^4)*(A^4 +
 2*A^2*B^2 + B^4))^(1/2) - 4*A^2*a*d^2 + 4*B^2*a*d^2 - 8*A*B*b*d^2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2))*(-(((8*A^
2*a*d^2 - 8*B^2*a*d^2 + 16*A*B*b*d^2)^2/4 - (16*a^2*d^4 + 16*b^2*d^4)*(A^4 + 2*A^2*B^2 + B^4))^(1/2) - 4*A^2*a
*d^2 + 4*B^2*a*d^2 - 8*A*B*b*d^2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2) - (32*(3*A^4*b^8 + B^4*b^8)*(a + b*tan(c + d
*x))^(1/2))/d^4)*(-(((8*A^2*a*d^2 - 8*B^2*a*d^2...

________________________________________________________________________________________